Neutron Spin Echo Spectroscopy and Spin Noise Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation

Alireza Heidari*
Faculty of Chemistry, California South University, USA

Image Article

In the current study, we have experimentally and comparatively investigated and compared malignant human cancer cells and tissues before and after irradiating of synchrotron radiation using Neutron Spin Echo Spectroscopy and Spin Noise Spectroscopy. It is clear that malignant human cancer cells and tissues have gradually transformed to benign human cancer cells and tissues under synchrotron radiation with the passage of time (Figures 1 and 2) [1-106].

It can be concluded that malignant human cancer cells and tissues have gradually transformed to benign human cancer cells and tissues under synchrotron radiation with the passage of time (Figures 1 and 2) [1-106].

*Corresponding author:
Alireza Heidari
Faculty of Chemistry
California South University
14731 Comet St, Irvine, CA 92604, USA
E-mail: Scholar.Researcher.Scientist@gmail.com, Alireza.Heidari@calsu.us


Copyright: © 2018 Heidari A. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 international License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Figure 1: Neutron Spin Echo Spectroscopy analysis of malignant cancer cells and tissues (a) before and (b) after irradiating of synchrotron radiation in transformation process to benign human cancer cells and tissues with the passage of time [1–106]
References


18. Heidari A. Measurement the Amount of Vitamin D2 (Ergocalciferol), Vitamin D3 (Cholecalciferol) and Absorbable Calcium (Ca²⁺), Iron (II) (Fe²⁺), Magnesium (Mg²⁺), Phosphate (PO₄³⁻) and Zinc (Zn²⁺) in Apricot Using High-Performance Liquid Chromatography (HPLC) and Spectroscopic Techniques. J Biom Biostat. 2016 Mar;7:1-3.

19. Heidari A. Spectroscopy and Quantum Mechanics of the Helium Dimer (He²⁻), Neon Dimer (Ne²⁻), Argon Dimer (Ar²⁻), Krypton Dimer (Kr²⁻), Xenon Dimer (Xe²⁻), Radon Dimer(Rn²⁻) and Ununocton Dimer (Uuo²⁻) Molecular Cations. Chem Sci J. 2016;7:1-2.


25. Heidari A. Pharmacokinetics and Experimental Therapeutic Study of DNA and Other Biomolecules Using Lasers: Advantages

Figure 2: Spin Noise Spectroscopy analysis of malignant cancer cells and tissues (a) before and (b) after irradiating of synchrotron radiation in transformation process to benign human cancer cells and tissues with the passage of time [1–106].


27. Heidari A. Discriminate between Antibacterial and Non-Antibacterial Drugs Artificial Neural Networks of a Multilayer Perceptron (MLP) Type Using a Set of Topological Descriptors. J Heavy Met Toxicity Dis. 2016 Jun;1:2.


69. Heidari A. Polymorphism in Nano-Sized Graphene Ligand-Induced Transformation of Au38-xAgx-xCu(x)(SPH-Bu)24 to Au56-xAgx-xCu(x)(SPH-Bu)24 (x = 1-12) Nanomolecules for Synthesis of Au44-xAgx-xCu(x)(SR)60, (SC4)60, (SC6)60, (SC12)60, (PET)60, (P-MBA)60, (F)60, (Cl)60, (Br)60, (I)60, (At)60, (Uus)60 and (SG6H13)60 Nano Clusters as Anti-Cancer Nano Drugs. J Nanomater Mol Nanotechnol. 2017 May;6:1-2.
74. Heidari A. Concurrent Diagnosis of Oncology Influence Outcomes in Emergency General Surgery for Colorectal Cancer and Multiple Sclerosis (Ms) Treatment Using Magnetic Resonance Imaging (MRI) and Au56-xAgx-xCu(x)(SR)60, Au38-xAgx-xCu(x)(SR)60, Au25-xAgx-xCu(x)(SR)60, Au14-xAgx-xCu(x)(SR)60, Au(Sph)60, Au(SpH)60, Au(SC6H5Ph)xAu21S(SAdm)15, Au25(pmBA)24 and Au25(pMBA)18 Nano Clusters. J Surgery Emerg Med. 2017 Jun;1:1-2.
83. Heidari A. Sedative, Analgesic and Ultrasound-Mediated Gastrointestinal Nano Drugs Delivery for Gastrointestinal


